organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## *N*-(4-Methoxybenzyl)-3-[(1*E*)-3-oxo-3phenylprop-1-en-1-yl]benzenesulfonamide

#### Carla Regina Andrighetti-Fröhner,<sup>a</sup> Ricardo José Nunes,<sup>a</sup> Luiz Everson da Silva,<sup>b</sup> Cláudia Maria Oliveira Simões<sup>c</sup> and Sabine Foro<sup>d</sup>\*

<sup>a</sup>Departamento de Química, UFSC, 88040-900 Florianópolis, SC, Brazil, <sup>b</sup>Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil, <sup>c</sup>Departamento de Ciências Farmacêuticas, UFSC, 88040-900 Florianópolis, SC, Brazil, and <sup>d</sup>Clemens Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, D-64287 Darmstadt, Germany

Correspondence e-mail: foro@tu-darmstadt.de

Received 20 June 2007; accepted 2 July 2007

Key indicators: single-crystal X-ray study; T = 299 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.135; data-to-parameter ratio = 13.7.

In the title compound,  $C_{24}H_{23}NO_5S$ , the enone group and the two attached aromatic rings are approximately coplanar. The planes of the two methoxybenzene groups are almost perpendicular, with a dihedral angle of 82.41 (8)°. The C– S–N–C and S–N–C–C torsion angles of 62.5 (2) and 60.0 (1)°, respectively, also show the nonplanarity of the system. The amino group has an intramolecular contact to a methoxy O atom. The crystal structure is stabilized by one N– H···O and three C–H···O intermolecular hydrogen bonds.

#### **Related literature**

For related literature, see: Buchmann & Schalinatus (1962); Go *et al.* (2004); Hermoso *et al.* (2003); Hsieh *et al.* (1998); Liu *et al.* (2003); Lunardi *et al.* (2003); Nielsen *et al.* (2004); Sabzevari *et al.* (2004); da Silva *et al.* (2007); Wu *et al.* (2003).



#### **Experimental**

| Crystal data                                      |                                 |
|---------------------------------------------------|---------------------------------|
| C <sub>24</sub> H <sub>23</sub> NO <sub>5</sub> S | b = 10.950 (1)  Å               |
| $M_r = 437.49$                                    | c = 11.307 (2) Å                |
| Triclinic, P1                                     | $\alpha = 65.020 \ (2)^{\circ}$ |
| a = 10.754 (1)  Å                                 | $\beta = 65.64 \ (2)^{\circ}$   |

 $\gamma = 85.92 \ (2)^{\circ}$   $V = 1090.9 \ (2) \ \text{\AA}^{3}$  Z = 2Cu  $K\alpha$  radiation

#### Data collection

Enraf–Nonius CAD-4 diffractometer Absorption correction: none 6636 measured reflections 3885 independent reflections

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$  $wR(F^2) = 0.135$ S = 1.073885 reflections 284 parameters  $\mu = 1.62 \text{ mm}^{-1}$  T = 299 (2) K $0.60 \times 0.60 \times 0.50 \text{ mm}$ 

|        | 3564 reflections with $I > 2\sigma(I)$                                   |
|--------|--------------------------------------------------------------------------|
| none   | $R_{\text{int}} = 0.019$<br>3 standard reflections<br>frequency: 120 min |
| ctions | intensity decay: 1.0%                                                    |
| )      | H atoms treated by a mixture of                                          |
|        | independent and constrained                                              |

 $\Delta \rho_{\rm max} = 0.76 \text{ e } \text{\AA}^{-3}$ 

### $\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$            | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|----------|-------------------------|--------------|--------------------------------------|
| N1-H1N···O3                 | 0.83 (2) | 2.59 (2)                | 3.060 (2)    | 116.7 (19)                           |
| $N1 - H1N \cdots O4^{i}$    | 0.83(2)  | 2.32 (2)                | 3.085 (2)    | 154 (2)                              |
| C16-H16A···O1 <sup>ii</sup> | 0.97     | 2.51                    | 3.299 (3)    | 138                                  |
| $C23-H23C\cdots O2^{iii}$   | 0.96     | 2.45                    | 3.204 (2)    | 136                                  |
| $C24 - H24B \cdots O2^{iv}$ | 0.96     | 2.44                    | 3.216 (3)    | 138                                  |
|                             |          |                         |              |                                      |

Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, -y + 2, -z; (iii) -x, -y + 1, -z + 1; (iv) x, y, z - 1.

Data collection: *CAD-4-PC Software* (Enraf–Nonius, 1996); cell refinement: *CAD-4-PC Software*; data reduction: *REDU4* (Stoe & Cie, 1987); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

The authors thank CNPq and Capes for financial support and Professor Dr Hartmut Fuess, Technische Universität Darmstadt, for diffractometer time.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2043).

#### References

Buchmann, G. & Schalinatus, E. (1962). J. Prakt. Chem. 16, 152-165.

- Enraf-Nonius (1996). *CAD-4-PC Software*. Version 2.0. Enraf-Nonius GmbH, Solingen, Germany.
- Go, M. L., Liu, M., Wilairat, P., Rosenthal, P. J., Saliba, K. J. & Kirk, K. (2004). Antimicrob. Agents Chemother. 48, 3241–3245.
- Hermoso, A., Jimenez, I. A., Mamani, Z. A., Bazzocchi, I. L., Piñero, J. E., Ravelo, A. G. & Valladares, B. (2003). *Bioorg. Med. Chem.* 11, 3975–3980.

Hsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). *Pharm. Res.* **15**, 39–46.

- Liu, M., Wilairat, P., Croft, S. L., Tan, A. C. L. & Go, M. L. (2003). *Bioorg. Med. Chem.* **11**, 2729–2738.
- Lunardi, F., Guzela, M., Rodrigues, A. T., Correa, R., Eger-Mangrich, I., Steindel, M., Grisard, E. C., Assreuy, J., Calixto, J. B. & Santos, A. R. (2003). *Antimicrob. Agents Chemother.* 47, 1449–1451.
- Nielsen, S. F., Boesen, T., Larsen, M., Schonning, K. & Kromann, H. (2004). Bioorg. Med. Chem. 12, 3047–3054.
- Sabzevari, O., Galati, G., Moridani, M. Y., Siraki, A. & O'Brien, P. J. (2004). Chem. Biol. Interact. 148, 57–67.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Silva, L. E. da, Joussef, A. C., Pacheco, L. K., Albino, D. B. L., Duarte, A. M. C., Steindel, M. & Rebelo, R. A. (2007). *Lett. Drug. Des. Discov.* 4, 154–159.Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.

Stoe & Cie (1987). *REDU4*. Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.

Wu, J.-H., Wang, X.-H., Yi, Y.-H. & Lee, K.-H. (2003). Bioorg. Med. Chem. 13, 1813–1815.

Acta Cryst. (2007). E63, o3437-o3438 [doi:10.1107/S1600536807032138]

### N-(4-Methoxybenzyl)-3-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]benzenesulfonamide

### C. R. Andrighetti-Fröhner, R. J. Nunes, L. E. da Silva, C. M. O. Simões and S. Foro

#### Comment

Chalones, considered as the precursors of flavonoids and isoflavonoids, are abundant in edible plants, and have also been shown to display a diverse array of pharmacological activities. Thus, naturally occurring and synthetic chalones have been reported to possess many useful properties, including antiflammatory (Hsieh *et al.*, 1998), antitrypanosomal (Lunardi *et al.*, 2003), antibacterial (Nielsen *et al.*, 2004), antiviral (Wu *et al.*, 2003), anticancer (Sabzevari *et al.*, 2004), antileishmanial (Hermoso *et al.*, 2003) and antimalarial (Liu *et al.*, 2003, Go *et al.*, 2004). As part of a project to develop more effective antileishmanial compounds (da Silva *et al.*, 2007), we report here the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1) the C1—S1—N1—C16 and S1—N1—C16—C17 torsion angles of 62,5 (2)° and 160.0 (1)°, respectivily, indicate the non-planarity of the system. The planes of the two methoxybenzene are approximately perpendicular, their dihedral angle is 82.41°. The enone group with the two phenyl rings are roughly planar with maximum deviations from the mean plane of -0.361 (2) Å for atom C1 and 0.280 (2) Å for atom C4. The title compound, (I), is stabilized by one N—H…O and three C—H…O intermolecular hydrogen bonds. The amino H atom has an intramolecular contact to O3 of a methoxy group. Details of the hydrogen-bonding parameters are given in Table 1.

#### **Experimental**

The title compound (I) was prepared by the reaction of 1 equivalent of chalconesulfonyl chloride (0.50 g, 1.48 mmol) and 2 equivalent of 4- methoxybenzylamine (0.30 g, 2.19 mmol) in the presence of pyridine. The mixture was stirred at 273 K for 30 min and then overnight at room temperatur, according to the literature procedure of Buchmann & Schalinatus (1962). Single crystals of (I) suitable for X-ray data collection were obtained by recrystallization from ethanol-water (95:5) solution.

#### Refinement

The amino H atom was located in difference map and refined freely. The C—H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å. The isotropic displacement parameters of all H atoms were set equal to  $1.2U_{eq}$  (parent atom).

#### **Figures**



Fig. 1. Molecular structure of (I), showing the atom labeling and displacement ellipsoids drawn at the 50% probability level.



Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.

## *N*-(4-Methoxybenzyl)-3-[(1E)-3-oxo-3-phenylprop-1-en-1- yl]benzenesulfonamide

| Crystal data                                      |                                                  |
|---------------------------------------------------|--------------------------------------------------|
| C <sub>24</sub> H <sub>23</sub> NO <sub>5</sub> S | Z = 2                                            |
| $M_r = 437.49$                                    | $F_{000} = 460$                                  |
| Triclinic, <i>P</i> T                             | $D_{\rm x} = 1.332 {\rm ~Mg~m}^{-3}$             |
| Hall symbol: -P 1                                 | Cu K $\alpha$ radiation<br>$\lambda = 1.54180$ Å |
| <i>a</i> = 10.754 (1) Å                           | Cell parameters from 25 reflections              |
| b = 10.950 (1)  Å                                 | $\theta = 4.5 - 21.2^{\circ}$                    |
| c = 11.307 (2)  Å                                 | $\mu = 1.62 \text{ mm}^{-1}$                     |
| $\alpha = 65.020 \ (2)^{\circ}$                   | T = 299 (2) K                                    |
| $\beta = 65.64 \ (2)^{\circ}$                     | Prism, colourless                                |
| $\gamma = 85.92 \ (2)^{\circ}$                    | $0.60\times0.60\times0.50~mm$                    |
| V = 1090.9 (2) Å <sup>3</sup>                     |                                                  |

#### Data collection

| Enraf–Nonius CAD4<br>diffractometer      | $R_{\rm int} = 0.019$                |
|------------------------------------------|--------------------------------------|
| Radiation source: fine-focus sealed tube | $\theta_{\text{max}} = 66.9^{\circ}$ |
| Monochromator: graphite                  | $\theta_{\min} = 4.5^{\circ}$        |
| T = 299(2)  K                            | $h = -12 \rightarrow 12$             |
| $\omega/2\theta$ scans                   | $k = -13 \rightarrow 7$              |
| Absorption correction: none              | $l = -13 \rightarrow 13$             |
| 6636 measured reflections                | 3 standard reflections               |
| 3885 independent reflections             | every 120 min                        |
| 3564 reflections with $I > 2\sigma(I)$   | intensity decay: 1.0%                |

#### Refinement

| Refinement on $F^2$             | Hydrogen site location: inferred from neighbouring sites                            |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | H atoms treated by a mixture of independent and constrained refinement              |
| $R[F^2 > 2\sigma(F^2)] = 0.049$ | $w = 1/[\sigma^2(F_o^2) + (0.0859P)^2 + 0.2564P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| $wR(F^2) = 0.135$               | $(\Delta/\sigma)_{\rm max} = 0.001$                                                 |
| S = 1.07                        | $\Delta \rho_{\rm max} = 0.76 \text{ e } \text{\AA}^{-3}$                           |

3885 reflections

284 parameters

$$\begin{split} &\Delta\rho_{min} = -0.38 \text{ e } \text{\AA}^{-3} \\ &\text{Extinction correction: SHELXL97 (Sheldrick, 1997),} \\ &\text{Fc}^* = \text{kFc}[1 + 0.001 \text{xFc}^2 \lambda^3 / \sin(2\theta)]^{-1/4} \end{split}$$

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.035 (2) Secondary atom site location: difference Fourier map

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x             | У            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|------|---------------|--------------|--------------|---------------------------|
| C1   | 0.15246 (17)  | 0.89121 (17) | 0.31382 (18) | 0.0399 (4)                |
| C2   | 0.02059 (17)  | 0.82499 (17) | 0.36844 (18) | 0.0416 (4)                |
| C3   | -0.09074 (19) | 0.89823 (19) | 0.3909 (2)   | 0.0492 (4)                |
| Н3   | -0.1793       | 0.8555       | 0.4293       | 0.059*                    |
| C4   | -0.0703 (2)   | 1.03431 (19) | 0.3564 (2)   | 0.0494 (4)                |
| H4   | -0.1461       | 1.0818       | 0.3719       | 0.059*                    |
| C5   | 0.06040 (19)  | 1.10280 (17) | 0.29886 (19) | 0.0442 (4)                |
| C6   | 0.17139 (18)  | 1.02804 (17) | 0.28016 (19) | 0.0427 (4)                |
| H6   | 0.2595        | 1.0703       | 0.2446       | 0.051*                    |
| C7   | 0.0846 (2)    | 1.24824 (18) | 0.2554 (2)   | 0.0492 (4)                |
| H7   | 0.1709        | 1.2815       | 0.2372       | 0.059*                    |
| C8   | -0.0034 (2)   | 1.33693 (19) | 0.2393 (2)   | 0.0559 (5)                |
| H8   | -0.0916       | 1.3059       | 0.2600       | 0.067*                    |
| C9   | 0.0314 (2)    | 1.48286 (19) | 0.1900 (2)   | 0.0506 (4)                |
| C10  | -0.0680 (2)   | 1.57794 (18) | 0.1533 (2)   | 0.0487 (4)                |
| C11  | -0.0281 (3)   | 1.7164 (2)   | 0.0892 (3)   | 0.0664 (6)                |
| H11  | 0.0607        | 1.7483       | 0.0659       | 0.080*                    |
| C12  | -0.1185 (3)   | 1.8078 (2)   | 0.0596 (3)   | 0.0765 (7)                |
| H12  | -0.0897       | 1.9005       | 0.0157       | 0.092*                    |
| C13  | -0.2500 (3)   | 1.7630 (2)   | 0.0943 (3)   | 0.0716 (6)                |
| H13  | -0.3111       | 1.8248       | 0.0759       | 0.086*                    |
| C14  | -0.2904 (3)   | 1.6273 (3)   | 0.1560 (3)   | 0.0774 (7)                |
| H14  | -0.3796       | 1.5963       | 0.1796       | 0.093*                    |
| C15  | -0.1995 (2)   | 1.5348 (2)   | 0.1839 (3)   | 0.0672 (6)                |
| H15  | -0.2278       | 1.4424       | 0.2239       | 0.081*                    |
| C16  | 0.3357 (2)    | 0.8561 (2)   | 0.0215 (2)   | 0.0577 (5)                |
| H16A | 0.3999        | 0.9302       | -0.0034      | 0.069*                    |
|      |               |              |              |                           |

| H16B | 0.2504       | 0.8918       | 0.0219       | 0.069*       |
|------|--------------|--------------|--------------|--------------|
| C17  | 0.39353 (19) | 0.80263 (19) | -0.0906 (2)  | 0.0515 (5)   |
| C18  | 0.3629 (2)   | 0.8547 (3)   | -0.2081 (3)  | 0.0734 (7)   |
| H18  | 0.3024       | 0.9197       | -0.2147      | 0.088*       |
| C19  | 0.4199 (3)   | 0.8125 (3)   | -0.3166 (3)  | 0.0842 (8)   |
| H19  | 0.3989       | 0.8503       | -0.3958      | 0.101*       |
| C20  | 0.5076 (2)   | 0.7146 (3)   | -0.3074 (3)  | 0.0678 (6)   |
| C21  | 0.5397 (2)   | 0.6611 (3)   | -0.1897 (3)  | 0.0636 (6)   |
| H21  | 0.5992       | 0.5951       | -0.1824      | 0.076*       |
| C22  | 0.4836 (2)   | 0.7055 (2)   | -0.0842 (2)  | 0.0578 (5)   |
| H22  | 0.5066       | 0.6696       | -0.0063      | 0.069*       |
| C23  | -0.1213 (2)  | 0.6179 (2)   | 0.4637 (2)   | 0.0558 (5)   |
| H23A | -0.1716      | 0.6598       | 0.4067       | 0.067*       |
| H23B | -0.1699      | 0.6171       | 0.5569       | 0.067*       |
| H23C | -0.1120      | 0.5265       | 0.4744       | 0.067*       |
| C24  | 0.5319 (4)   | 0.7055 (6)   | -0.5223 (4)  | 0.1353 (17)  |
| H24A | 0.5530       | 0.8023       | -0.5766      | 0.162*       |
| H24B | 0.4351       | 0.6802       | -0.4862      | 0.162*       |
| H24C | 0.5826       | 0.6624       | -0.5832      | 0.162*       |
| N1   | 0.30943 (17) | 0.75095 (15) | 0.16603 (18) | 0.0504 (4)   |
| H1N  | 0.246 (3)    | 0.691 (2)    | 0.196 (3)    | 0.061*       |
| 01   | 0.41463 (13) | 0.89476 (13) | 0.22650 (17) | 0.0584 (4)   |
| O2   | 0.27018 (14) | 0.67994 (13) | 0.41698 (16) | 0.0575 (4)   |
| O3   | 0.01235 (12) | 0.69317 (12) | 0.39384 (16) | 0.0521 (3)   |
| O4   | 0.13915 (16) | 1.52652 (15) | 0.1792 (2)   | 0.0679 (4)   |
| O5   | 0.5685 (2)   | 0.6637 (3)   | -0.4059 (2)  | 0.1024 (7)   |
| S1   | 0.29639 (4)  | 0.79940 (4)  | 0.28704 (5)  | 0.04518 (19) |

## Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|-------------|--------------|--------------|
| C1  | 0.0368 (8)  | 0.0334 (8)  | 0.0445 (9)  | 0.0023 (6)  | -0.0147 (7)  | -0.0145 (7)  |
| C2  | 0.0389 (9)  | 0.0334 (8)  | 0.0475 (9)  | 0.0013 (7)  | -0.0152 (7)  | -0.0157 (7)  |
| C3  | 0.0367 (9)  | 0.0430 (10) | 0.0614 (11) | 0.0026 (7)  | -0.0162 (8)  | -0.0208 (9)  |
| C4  | 0.0442 (10) | 0.0404 (9)  | 0.0609 (11) | 0.0112 (7)  | -0.0212 (8)  | -0.0215 (8)  |
| C5  | 0.0485 (10) | 0.0359 (9)  | 0.0475 (9)  | 0.0050 (7)  | -0.0202 (8)  | -0.0175 (7)  |
| C6  | 0.0413 (9)  | 0.0358 (9)  | 0.0483 (9)  | 0.0012 (7)  | -0.0176 (7)  | -0.0164 (7)  |
| C7  | 0.0529 (10) | 0.0390 (10) | 0.0569 (10) | 0.0036 (8)  | -0.0233 (9)  | -0.0212 (8)  |
| C8  | 0.0565 (11) | 0.0370 (10) | 0.0745 (13) | 0.0067 (8)  | -0.0302 (10) | -0.0220 (9)  |
| C9  | 0.0568 (11) | 0.0373 (9)  | 0.0570 (11) | 0.0056 (8)  | -0.0230 (9)  | -0.0208 (8)  |
| C10 | 0.0597 (11) | 0.0360 (9)  | 0.0490 (10) | 0.0071 (8)  | -0.0226 (8)  | -0.0177 (8)  |
| C11 | 0.0767 (15) | 0.0391 (10) | 0.0826 (15) | 0.0048 (10) | -0.0406 (12) | -0.0184 (10) |
| C12 | 0.102 (2)   | 0.0382 (11) | 0.0880 (17) | 0.0159 (12) | -0.0496 (15) | -0.0180 (11) |
| C13 | 0.0833 (17) | 0.0600 (14) | 0.0698 (14) | 0.0293 (12) | -0.0385 (13) | -0.0236 (11) |
| C14 | 0.0682 (15) | 0.0638 (14) | 0.0938 (18) | 0.0148 (12) | -0.0417 (14) | -0.0221 (13) |
| C15 | 0.0681 (14) | 0.0443 (11) | 0.0858 (15) | 0.0073 (10) | -0.0378 (12) | -0.0201 (11) |
| C16 | 0.0582 (12) | 0.0381 (10) | 0.0646 (12) | 0.0034 (8)  | -0.0192 (10) | -0.0178 (9)  |
| C17 | 0.0433 (10) | 0.0433 (10) | 0.0573 (11) | -0.0011 (8) | -0.0162 (8)  | -0.0162 (8)  |

| C18 | 0.0591 (13) | 0.0799 (16) | 0.0718 (14) | 0.0226 (12)  | -0.0308 (11) | -0.0236 (13) |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C19 | 0.0589 (14) | 0.129 (3)   | 0.0641 (14) | 0.0185 (15)  | -0.0325 (12) | -0.0356 (15) |
| C20 | 0.0373 (10) | 0.1054 (19) | 0.0641 (13) | 0.0027 (11)  | -0.0168 (9)  | -0.0431 (13) |
| C21 | 0.0517 (12) | 0.0751 (15) | 0.0724 (14) | 0.0172 (10)  | -0.0284 (10) | -0.0387 (12) |
| C22 | 0.0554 (11) | 0.0616 (12) | 0.0609 (12) | 0.0116 (9)   | -0.0286 (10) | -0.0273 (10) |
| C23 | 0.0446 (10) | 0.0413 (10) | 0.0700 (12) | -0.0070 (8)  | -0.0177 (9)  | -0.0185 (9)  |
| C24 | 0.086 (2)   | 0.262 (6)   | 0.096 (2)   | 0.017 (3)    | -0.0407 (19) | -0.107 (3)   |
| N1  | 0.0443 (8)  | 0.0341 (8)  | 0.0607 (10) | -0.0014 (6)  | -0.0104 (7)  | -0.0203 (7)  |
| O1  | 0.0387 (7)  | 0.0437 (7)  | 0.0847 (10) | -0.0025 (6)  | -0.0214 (7)  | -0.0241 (7)  |
| O2  | 0.0539 (8)  | 0.0391 (7)  | 0.0694 (9)  | 0.0034 (6)   | -0.0320 (7)  | -0.0085 (6)  |
| O3  | 0.0381 (6)  | 0.0334 (6)  | 0.0751 (9)  | -0.0008 (5)  | -0.0171 (6)  | -0.0209 (6)  |
| O4  | 0.0652 (9)  | 0.0451 (8)  | 0.1030 (12) | 0.0077 (7)   | -0.0435 (9)  | -0.0329 (8)  |
| O5  | 0.0650 (11) | 0.187 (2)   | 0.0935 (13) | 0.0307 (12)  | -0.0360 (10) | -0.0943 (16) |
| S1  | 0.0343 (3)  | 0.0330 (3)  | 0.0608 (3)  | 0.00177 (17) | -0.0175 (2)  | -0.0159 (2)  |

Geometric parameters (Å, °)

| C1—C6    | 1.389 (2)   | C15—H15      | 0.9300      |
|----------|-------------|--------------|-------------|
| C1—C2    | 1.401 (2)   | C16—N1       | 1.467 (3)   |
| C1—S1    | 1.7740 (17) | C16—C17      | 1.504 (3)   |
| C2—O3    | 1.349 (2)   | C16—H16A     | 0.9700      |
| C2—C3    | 1.388 (3)   | C16—H16B     | 0.9700      |
| C3—C4    | 1.380 (3)   | C17—C18      | 1.376 (3)   |
| С3—Н3    | 0.9300      | C17—C22      | 1.386 (3)   |
| C4—C5    | 1.395 (3)   | C18—C19      | 1.382 (4)   |
| C4—H4    | 0.9300      | C18—H18      | 0.9300      |
| С5—С6    | 1.392 (3)   | C19—C20      | 1.375 (4)   |
| С5—С7    | 1.462 (2)   | C19—H19      | 0.9300      |
| С6—Н6    | 0.9300      | C20—O5       | 1.361 (3)   |
| С7—С8    | 1.316 (3)   | C20—C21      | 1.388 (3)   |
| С7—Н7    | 0.9300      | C21—C22      | 1.371 (3)   |
| С8—С9    | 1.471 (3)   | C21—H21      | 0.9300      |
| С8—Н8    | 0.9300      | C22—H22      | 0.9300      |
| С9—О4    | 1.225 (2)   | C23—O3       | 1.432 (2)   |
| C9—C10   | 1.497 (3)   | C23—H23A     | 0.9600      |
| C10—C15  | 1.377 (3)   | C23—H23B     | 0.9600      |
| C10—C11  | 1.384 (3)   | C23—H23C     | 0.9600      |
| C11—C12  | 1.380 (3)   | C24—O5       | 1.410 (4)   |
| С11—Н11  | 0.9300      | C24—H24A     | 0.9600      |
| C12—C13  | 1.368 (4)   | C24—H24B     | 0.9600      |
| С12—Н12  | 0.9300      | C24—H24C     | 0.9600      |
| C13—C14  | 1.360 (4)   | N1—S1        | 1.6179 (18) |
| С13—Н13  | 0.9300      | N1—H1N       | 0.83 (2)    |
| C14—C15  | 1.388 (3)   | O1—S1        | 1.4293 (13) |
| C14—H14  | 0.9300      | O2—S1        | 1.4271 (14) |
| C6—C1—C2 | 120.57 (15) | N1—C16—H16A  | 109.2       |
| C6-C1-S1 | 119.79 (13) | C17—C16—H16A | 109.2       |
| C2-C1-S1 | 119.64 (12) | N1—C16—H16B  | 109.2       |
| O3—C2—C3 | 124.83 (15) | C17—C16—H16B | 109.2       |
|          |             |              |             |

| O3—C2—C1    | 116.54 (15)  | H16A—C16—H16B   | 107.9       |
|-------------|--------------|-----------------|-------------|
| C3—C2—C1    | 118.63 (15)  | C18—C17—C22     | 117.6 (2)   |
| C4—C3—C2    | 120.14 (17)  | C18—C17—C16     | 120.2 (2)   |
| С4—С3—Н3    | 119.9        | C22—C17—C16     | 122.13 (19) |
| С2—С3—Н3    | 119.9        | C17—C18—C19     | 121.5 (2)   |
| C3—C4—C5    | 122.10 (17)  | C17—C18—H18     | 119.2       |
| C3—C4—H4    | 118.9        | C19—C18—H18     | 119.2       |
| С5—С4—Н4    | 118.9        | C20—C19—C18     | 120.0 (2)   |
| C6—C5—C4    | 117.54 (16)  | С20—С19—Н19     | 120.0       |
| C6—C5—C7    | 119.63 (17)  | C18—C19—H19     | 120.0       |
| C4—C5—C7    | 122.81 (17)  | O5—C20—C19      | 125.5 (2)   |
| C1—C6—C5    | 120.97 (16)  | O5-C20-C21      | 115.3 (2)   |
| С1—С6—Н6    | 119.5        | C19—C20—C21     | 119.2 (2)   |
| С5—С6—Н6    | 119.5        | C22—C21—C20     | 119.8 (2)   |
| C8—C7—C5    | 126.67 (19)  | C22—C21—H21     | 120.1       |
| С8—С7—Н7    | 116.7        | C20-C21-H21     | 120.1       |
| С5—С7—Н7    | 116.7        | C21—C22—C17     | 121.7 (2)   |
| C7—C8—C9    | 123.05 (19)  | C21—C22—H22     | 119.1       |
| С7—С8—Н8    | 118.5        | C17—C22—H22     | 119.1       |
| С9—С8—Н8    | 118.5        | O3—C23—H23A     | 109.5       |
| O4—C9—C8    | 121.05 (18)  | O3—C23—H23B     | 109.5       |
| O4—C9—C10   | 120.23 (17)  | H23A—C23—H23B   | 109.5       |
| C8—C9—C10   | 118.72 (17)  | O3—C23—H23C     | 109.5       |
| C15—C10—C11 | 117.9 (2)    | H23A—C23—H23C   | 109.5       |
| C15—C10—C9  | 123.28 (17)  | H23B—C23—H23C   | 109.5       |
| C11—C10—C9  | 118.82 (19)  | O5—C24—H24A     | 109.5       |
| C12—C11—C10 | 120.8 (2)    | O5—C24—H24B     | 109.5       |
| C12—C11—H11 | 119.6        | H24A—C24—H24B   | 109.5       |
| C10-C11-H11 | 119.6        | O5—C24—H24C     | 109.5       |
| C13—C12—C11 | 120.5 (2)    | H24A—C24—H24C   | 109.5       |
| C13—C12—H12 | 119.7        | H24B—C24—H24C   | 109.5       |
| C11—C12—H12 | 119.7        | C16—N1—S1       | 117.95 (13) |
| C14—C13—C12 | 119.4 (2)    | C16—N1—H1N      | 112.0 (16)  |
| C14—C13—H13 | 120.3        | S1—N1—H1N       | 112.5 (16)  |
| С12—С13—Н13 | 120.3        | C2—O3—C23       | 118.27 (14) |
| C13—C14—C15 | 120.5 (2)    | C20—O5—C24      | 118.3 (3)   |
| C13—C14—H14 | 119.8        | O2—S1—O1        | 119.13 (9)  |
| C15—C14—H14 | 119.8        | O2—S1—N1        | 107.33 (9)  |
| C10—C15—C14 | 120.9 (2)    | O1—S1—N1        | 107.20 (9)  |
| C10-C15-H15 | 119.6        | O2—S1—C1        | 109.06 (9)  |
| C14—C15—H15 | 119.6        | O1—S1—C1        | 106.28 (8)  |
| N1—C16—C17  | 112.19 (16)  | N1—S1—C1        | 107.31 (9)  |
| C6—C1—C2—O3 | 177.98 (16)  | C9—C10—C15—C14  | 175.8 (2)   |
| S1—C1—C2—O3 | -1.8 (2)     | C13-C14-C15-C10 | 1.6 (4)     |
| C6—C1—C2—C3 | -1.3 (3)     | N1—C16—C17—C18  | 147.5 (2)   |
| S1—C1—C2—C3 | 178.87 (14)  | N1-C16-C17-C22  | -35.6 (3)   |
| O3—C2—C3—C4 | -177.63 (18) | C22-C17-C18-C19 | -0.2 (4)    |
| C1—C2—C3—C4 | 1.6 (3)      | C16—C17—C18—C19 | 176.7 (2)   |
| C2—C3—C4—C5 | -0.2 (3)     | C17—C18—C19—C20 | 1.2 (4)     |

| C3—C4—C5—C6     | -1.5 (3)     | C18—C19—C20—O5  | 179.1 (3)    |
|-----------------|--------------|-----------------|--------------|
| C3—C4—C5—C7     | 177.04 (19)  | C18-C19-C20-C21 | -1.2 (4)     |
| C2-C1-C6-C5     | -0.4 (3)     | O5-C20-C21-C22  | -180.0 (2)   |
| S1—C1—C6—C5     | 179.39 (13)  | C19—C20—C21—C22 | 0.3 (4)      |
| C4—C5—C6—C1     | 1.8 (3)      | C20-C21-C22-C17 | 0.6 (3)      |
| C7—C5—C6—C1     | -176.81 (16) | C18-C17-C22-C21 | -0.7 (3)     |
| C6—C5—C7—C8     | 165.6 (2)    | C16—C17—C22—C21 | -177.6 (2)   |
| C4—C5—C7—C8     | -13.0 (3)    | C17—C16—N1—S1   | 160.04 (14)  |
| C5—C7—C8—C9     | -177.75 (19) | C3—C2—O3—C23    | -7.2 (3)     |
| С7—С8—С9—О4     | -9.6 (3)     | C1—C2—O3—C23    | 173.51 (16)  |
| C7—C8—C9—C10    | 170.6 (2)    | C19—C20—O5—C24  | -5.3 (4)     |
| O4—C9—C10—C15   | -169.4 (2)   | C21—C20—O5—C24  | 175.0 (3)    |
| C8—C9—C10—C15   | 10.4 (3)     | C16—N1—S1—O2    | 179.58 (14)  |
| O4—C9—C10—C11   | 8.6 (3)      | C16—N1—S1—O1    | -51.33 (17)  |
| C8—C9—C10—C11   | -171.6 (2)   | C16—N1—S1—C1    | 62.49 (16)   |
| C15-C10-C11-C12 | 1.1 (4)      | C6—C1—S1—O2     | 127.79 (15)  |
| C9-C10-C11-C12  | -177.0 (2)   | C2-C1-S1-O2     | -52.39 (16)  |
| C10-C11-C12-C13 | 0.6 (4)      | C6-C1-S1-O1     | -1.81 (17)   |
| C11—C12—C13—C14 | -1.3 (4)     | C2-C1-S1-O1     | 178.01 (14)  |
| C12-C13-C14-C15 | 0.2 (4)      | C6-C1-S1-N1     | -116.25 (15) |
| C11—C10—C15—C14 | -2.2 (4)     | C2-C1-S1-N1     | 63.57 (16)   |
|                 |              |                 |              |

Hydrogen-bond geometry (Å, °)

| D—H···A                      | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|------------------------------|-------------|--------------|--------------|------------|
| N1—H1N···O3                  | 0.83 (2)    | 2.59 (2)     | 3.060 (2)    | 116.7 (19) |
| N1—H1N···O4 <sup>i</sup>     | 0.83 (2)    | 2.32 (2)     | 3.085 (2)    | 154 (2)    |
| C16—H16A···O1 <sup>ii</sup>  | 0.97        | 2.51         | 3.299 (3)    | 138        |
| C23—H23C···O2 <sup>iii</sup> | 0.96        | 2.45         | 3.204 (2)    | 136        |
| C24—H24B···O2 <sup>iv</sup>  | 0.96        | 2.44         | 3.216 (3)    | 138        |

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) -*x*+1, -*y*+2, -*z*; (iii) -*x*, -*y*+1, -*z*+1; (iv) *x*, *y*, *z*-1.







Fig. 2